What is an air-breathing ion engine thruster? Bob Zimmerman BehindtheBlack.com

Mar 08, 01:55 AM


(Photo:This image of a xenon ion engine, photographed through a port of the vacuum chamber where it was being tested at NASA's Jet Propulsion Laboratory, shows the faint blue glow of charged atoms being emitted from the engine.

The ion propulsion engine is the first non-chemical propulsion to be used as the primary means of propelling a spacecraft. Though the thrust of the ion propulsion is about the same as the downward pressure of a single sheet of paper, by the end of the mission, the ion engine will have changed the spacecraft speed by about 13,700 kilometers/hour (8500 miles/hour). Even then, it will have expended only about 64 kg of its 81.5 kg supply of xenon propellant. )



Twitter: @BatchelorShow

What is an air-breathing ion engine thruster? Bob Zimmerman BehindtheBlack.com

ESA successfully tests an air-breathing ion thruster

March 6, 2018 at 8:01 am Robert Zimmerman

Engineers from the European Space Agency (ESA) and an Italian company have successfully tested a prototype of an ion engine that would obtain its fuel from the thin atmosphere available in low Earth orbit, thus allowing it to operate practically indefinitely.

From the press release:

Replacing onboard propellant with atmospheric molecules would create a new class of satellites able to operate in very low orbits for long periods. Air-breathing electric thrusters could also be used at the outer fringes of atmospheres of other planets, drawing on the carbon dioxide of Mars, for instance. “This project began with a novel design to scoop up air molecules as propellant from the top of Earth’s atmosphere at around 200 km altitude with a typical speed of 7.8 km/s,” explains ESA’s Louis Walpot.

Think about it. You supply your planetary probe one or more of these engines, and once it reaches orbit around its target it has an unlimited fuel supply to do research just about forever. More important, such technology when further refined is going to enhance human exploration as well. For example, rather than use the atmosphere at it arrives, later designs could simply dive into the atmosphere to get the spaceship’s tank refilled. Such engines would make spacecraft free from the tether of Earth.